Chronic NMDA receptor blockade from birth delays the maturation of NMDA currents, but does not affect AMPA/kainate currents.
نویسندگان
چکیده
The activity of the N-methyl-D-aspartate receptor (NR) regulates the composition of excitatory synapses and mediates multiple forms of synaptic and structural plasticity. In the superficial superior colliculus (sSC) of the rat, NR activity is essential for the full refinement of retinotopy during development. We have examined the NR's role in synaptic development by chronically treating the sSC from birth with the competitive antagonist (+/-)-2-amino-5-phosphonopentanoic acid (AP5) released by the slow-release polymer Elvax. Whole-cell voltage-clamp recordings were used to characterize excitatory postsynaptic potentials (EPSCs) in slices from postnatal day (P)12-20 sSC. Chronic NR blockade reduced the ratio of AMPA/kainate receptor (AMPAR) to NR peak current amplitudes of both spontaneous (s)EPSCs and evoked EPSCs. Spontaneous NR current amplitude was increased following treatment, while spontaneous AMPAR currents were identical to those of controls, indicating that the ratio change was due to an increased NR current. Comparison of sEPSC frequency, AMPAR current rectification, and quantitative Western blots indicated that the characteristics of AMPARs at the synapse are normal following AP5 treatment. In the sSC, NR currents show a rapid decrease in decay time on P11 and previous studies in slices indicate this change results from a NR-mediated activation of the phosphatase calcineurin. Consistent with this in vitro finding, the down-regulation failed to occur in sSC chronically treated with AP5 in vivo. Together the present data show that NR function is necessary for subsequent NR current regulation in vivo, but it is not essential for the developmental expression of normal AMPAR currents.
منابع مشابه
Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat
Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...
متن کاملPerampanel Inhibition of AMPA Receptor Currents in Cultured Hippocampal Neurons
Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 ...
متن کاملDevelopmental depression of glutamate neurotransmission by chronic low-level activation of NMDA receptors.
Slabs of slow-release plastic (Elvax) containing NMDA or solvent were implanted over the rat colliculus beginning on postnatal day 8 (P8). Whole-cell patch clamping in the superficial superior collicular layers (sSCs) from P10 to P21 demonstrated a severe decrease in spontaneous EPSC frequency after chronic NMDA treatment. The decrease was not attributable to an increase in GABA(A) receptor-med...
متن کاملExperience-Dependent Plasticity and the Maturation of Glutamatergic Synapses
Early Development of Glutamatergic Synaptic Currents The majority of fast excitatory neurotransmission in the CNS is mediated by ionotropic glutamate receptors, which are divided into NMDA, AMPA, and kainate receptor subtypes on the basis of the biophysical properties of their currents, their sensitivity to different pharmaco-Glutamatergic synaptic currents undergo a characteris-logical agents,...
متن کاملLight-evoked excitatory synaptic currents of X-type retinal ganglion cells.
The excitatory amino acid receptor (EAAR) types involved in the generation of light-evoked excitatory postsynaptic currents (EPSCs) were examined in X-type retinal ganglion cells. Using isolated and sliced preparations of cat and ferret retina, the light-evoked EPSCs of X cells were isolated by adding picrotoxin and strychnine to the bath to remove synaptic inhibition. N-methyl-D-aspartate (NMD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 1 شماره
صفحات -
تاریخ انتشار 2003